Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The ability to maintain a high core body temperature is a defining characteristic of all mammals, yet their diverse habitats present disparate thermal challenges that have led to specialized adaptations. Marine mammals inhabit a highly conductive environment. Their thermoregulatory capabilities far exceed our own despite having limited avenues of heat transfer. Additionally, marine mammals must balance their thermoregulatory demands with those associated with diving (i.e. oxygen conservation), both of which rely on cardiovascular adjustments. This review presents the progress and novel efforts in investigating marine mammal thermoregulation, with a particular focus on the role of peripheral perfusion. Early studies in marine mammal thermal physiology were primarily performed in the laboratory and provided foundational knowledge through in vivo experiments and ex vivo measurements. However, the ecological relevance of these findings remains unknown because comparable efforts on free-ranging animals have been limited. We demonstrate the utility of biologgers for studying their thermal adaptations in the context in which they evolved. Our preliminary results from freely diving northern elephant seals (Mirounga angustirostris) reveal blubber’s dynamic nature and the complex interaction between thermoregulation and the dive response due to the dual role of peripheral perfusion. Further exploring the potential use of biologgers for measuring physiological variables relevant to thermal physiology in other marine mammal species will enhance our understanding of the relative importance of morphology, physiology, and behavior for thermoregulation and overall homeostasis.more » « less
-
In this paper, we introduce a creative pipeline to incorporate physiological and behavioral data from contemporary marine mammal research into data-driven animations, leveraging functionality from industry tools and custom scripts to promote scientific insights, public awareness, and conservation outcomes. Our framework can flexibly transform data describing animals’ orientation, position, heart rate, and swimming stroke rate to control the position, rotation, and behavior of 3D models, to render animations, and to drive data sonification. Additionally, we explore the challenges of unifying disparate datasets gathered by an interdisciplinary team of researchers, and outline our design process for creating meaningful data visualization tools and animations. As part of our pipeline, we clean and process raw acceleration and electrophysiological signals to expedite complex multi-stream data analysis and the identification of critical foraging and escape behaviors. We provide details about four animation projects illustrating marine mammal datasets. These animations, commissioned by scientists to achieve outreach and conservation outcomes, have successfully increased the reach and engagement of the scientific projects they describe. These impactful visualizations help scientists identify behavioral responses to disturbance, increase public awareness of human-caused disturbance, and help build momentum for targeted conservation efforts backed by scientific evidence.more » « less
An official website of the United States government
